

Washington's Soil Health Initiative &

Climate Smart Estimator

Jadey Ryan Leslie Michel and Dani Gelardi WADE Conference June 13, 2023

Washington State Department of Agriculture

WaCSE

WaSHI offers research, outreach, education, policy support, and funding opportunities, to help farmers, the environment, and the people of Washington.

Chad

Goal 1: Increase awareness of soil health

Goal 2: Document the state of the soils

Goal 3: Improve understanding of soil health building practices

Goal 4: Increase adoption of soil health building practices

We need diverse solutions for diverse soils.

The Soil Health Roadmap identifies challenges, knowledge gaps, and goals for improving soil health.

Red raspberry will be added to the roadmap soon!

WaSHI has the country's most densely populated network of LTAREs to measure management impacts over time.

Long-Term Research Sites

WSU Mount Vernon: Northwestern Washington Annual Cropping Systems

WSU Puyallup:

Diversified Organic Systems with Livestock WSU Wilke Farm: Oryland Systems with Livestock

WSU Wenatchee:
 Central Washington
 Tree Fruit Systems

WSU Othello: Irrigated Potato Systems

WSU Prosser: Wine Grape Systems

The State of the Soils Assessment is building soil health understanding across Washington.

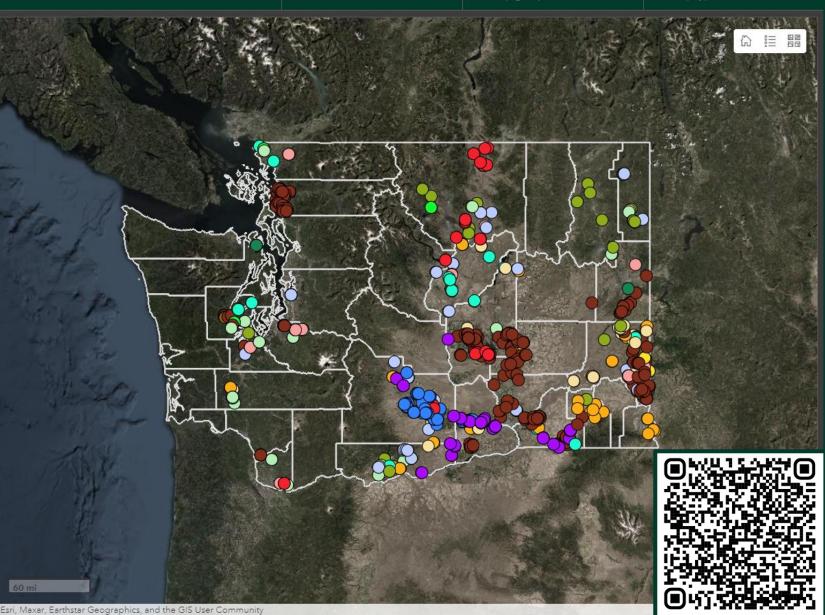
WSDA WSDA WSDA Washington State Department of Agriculture

30 Counties

67 Crops/land use types

30 Soil health indicators

Washington Soil Health Initiative


876 Sites sampled

Leslie Michel

Crop Types

Filter by crop group

All crop groups

Filter by crop type

All crop types

Filter by county

All counties

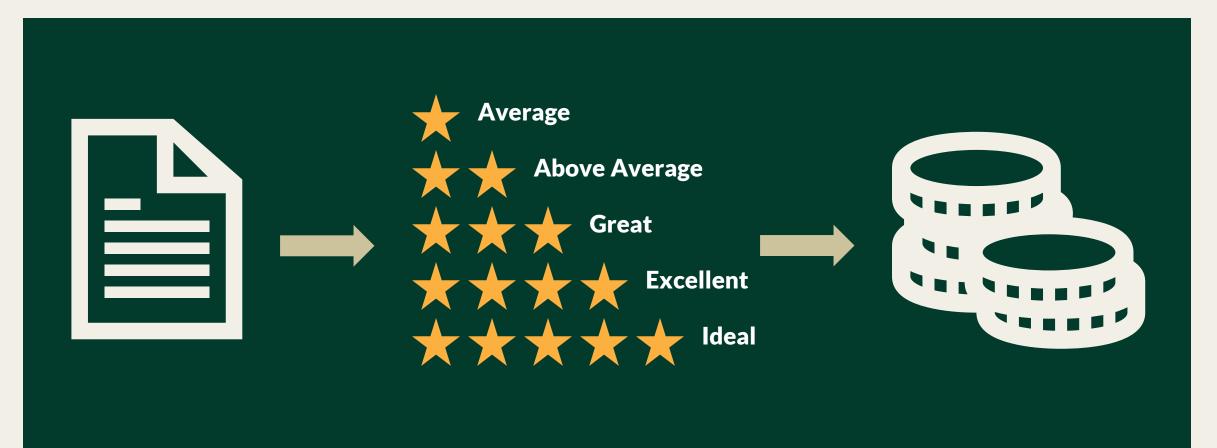
WSDA Dani Gelardi (WSDA) Agriculture

Understanding soil tests

SCC Center for Technical Development

Dani Gelardi, WSDA Senior Soil Scientist Deirdre Griffin LaHue, WSU Assistant Professor March 14th, 2023

Washington Soil Health Initiative


1:36 / 55:06 · Intro >

STAR will create economic opportunities for Washington producers.

GTOMORR

S.T.A.P

STAR is a free, voluntary program created by farmers for farmers to reward healthy land management.

First review June 12 Continuous recruitment Soil Health Economic Development Coordinator

Join Washington State Department of Agriculture to implement, promote, and coordinate the nationally recognized, <u>Saving Tomorrow's Agricultural Resources</u> program in Washington.

WE ARE

-IRING

Washington State Department of Agriculture

STAR improves the business case for soil health to ensure thriving Washington economies and ecosystems.

STAR Science Committee forms July 2023

Producer enrollment begins June 2024

WaSHI Resource Roundup

Newsletter

Experiment Site Tour

• Equipment Demonstrations

Soil Health Conversations

SAVE THE DATE

THURSDAY, JULY 27TH, 2023

Mount Vernon NWREC

Center for Sustaining Agriculture

WSU Soil Health @WSU_SoilHealth

Some fava bean seedlings are soaking up a few sun rays during a break in the clouds @WSU_NWREC. Fava beans are atmospheric nitrogenfixing legumes and can be grown over the winter as a cover crop in Northwestern Washington.

9:51 AM · 26 Oct, 2022

@WSU_SoilHealth

WSDA Soil YouTube

Questions? Comments? Ideas?

Dani Gelardi dgelardi@agr.wa.gov

Use greenhouse gas inventory & conservation scenario analysis tools to estimate climate benefits.

There are three primary tools.

USDA United States Department of Agriculture Natural Resources Conservation Service

Whole Farm and Ranch Carbon and Greenhouse Gas Accounting System.

COMET-Planner

COLORADO STATE UNIVERSITY

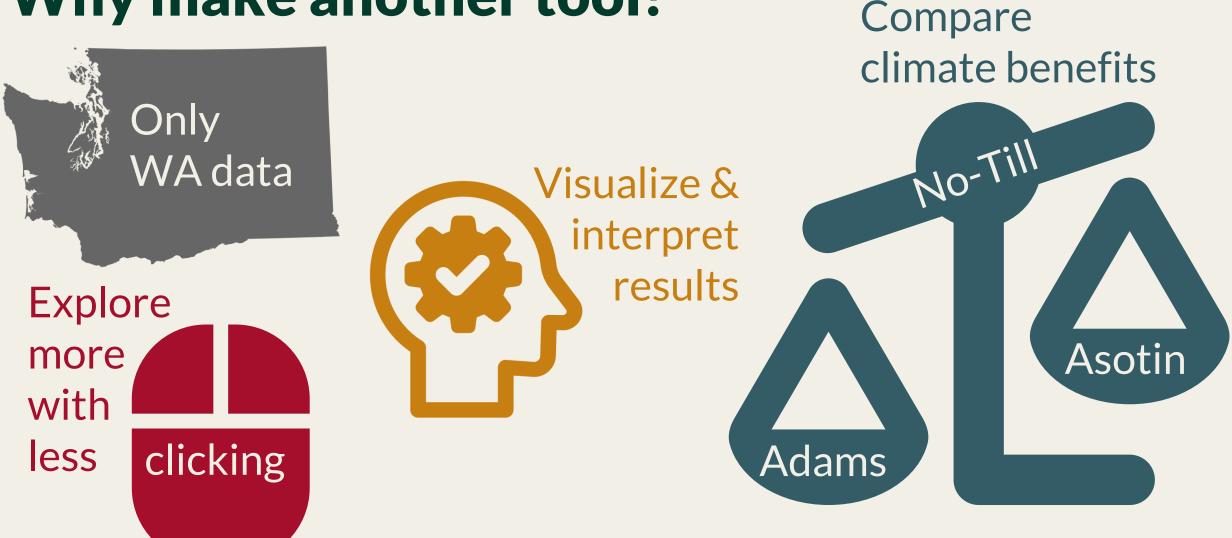
There are many use cases for climate benefit estimates.

Incentive Programs

Decision Making

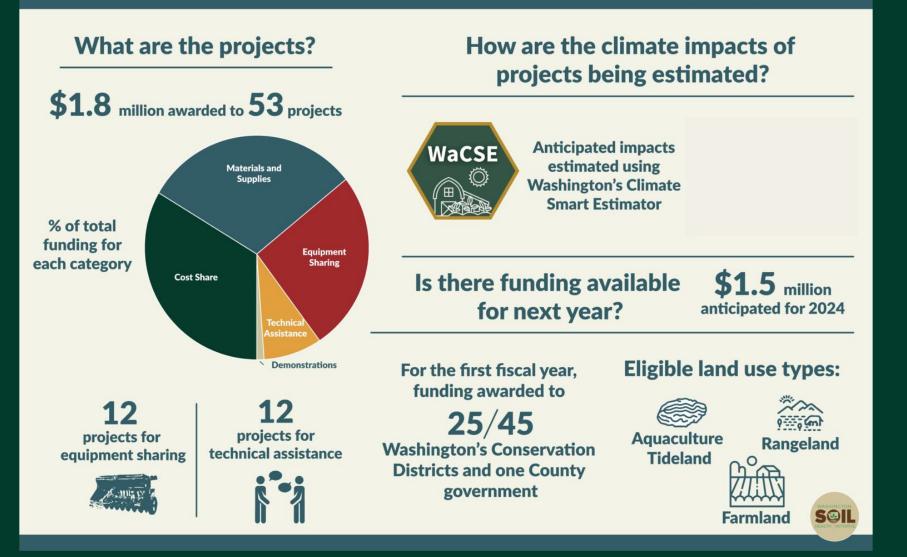
Conservation Farm Plans

Carbon Market



COMET Methods & Resources

	G COMET-Farm Tools	
-	Home Solutions	
	How can we help you today?	
	Enter your search term here	
	New Support Ticket Check Ticket Status	
	Knowledge base	
l	COMET Farm FAQs	
COMET-FAR TOOLS	@comet-tools 34 subscribers 26 videos	
	More about this channel >	ý,


Why make another tool?

Sustainable Farms and Fields 2023 Funded Projects

The Sustainable Farms and Fields program provides technical and financial assistance and funds shared equipment to make it easier and more affordable for farmers and ranchers to implement climate smart practices – or those that increase carbon sequestration and reduce greenhouse gas emissions

COMET and WaCSE Comparison

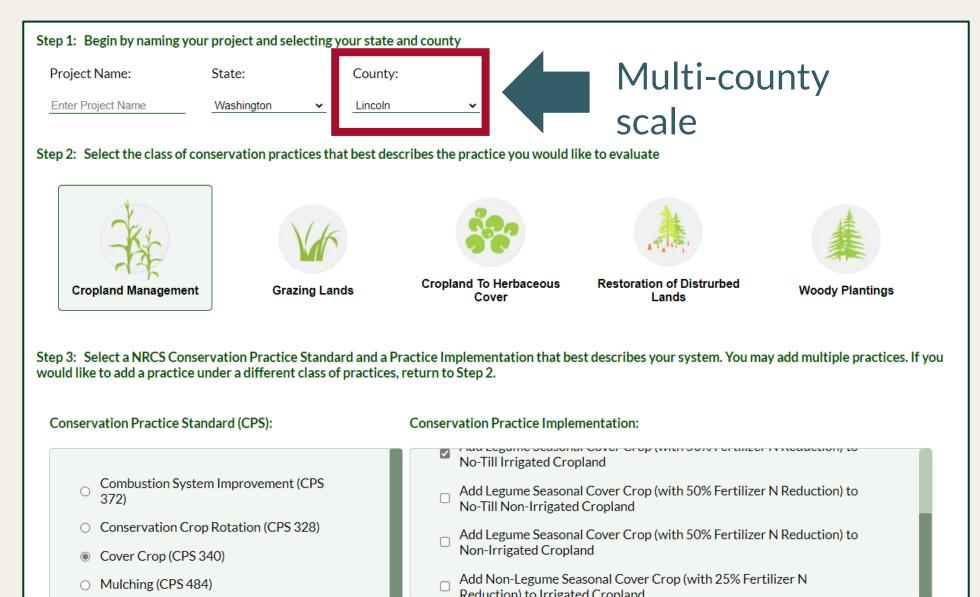
User Interface

Data

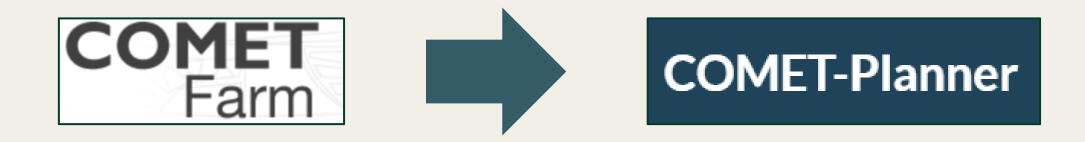
Visualization

COMET-Farm requires **20 years of historical management** to generate a **10-year prediction**.

Farm


scale

Step 1 Step 2 Field Management 💌 Activities Parcel Locations Historic Management Baseline Management Pre-2000 Scenarios for 10 year period Tillage, Implements, Manure/Compost Limina & Planting Application Select a parcel: Circle1 ~ Fertilizer Crop and Irrigation Burnina Planting Date Application Circle2 (21 ac For Parcel Circle1 in 2000 what crop did you plant, when did you plant, and when did you harvest? What type of crop?: Circle1 (125 acres) Annual Crop/Hay/Grass Seasonal Cover Crop Orchard/Vineyard Crop Crop Alfalfa × Continue perennial crop from last year? Planting Date 01/01/2000 • Data Parcel Management Summary Harvest Table Add New Harvest **Drag and Drop Crop Rotation** Grain / Straw / Stover / Fruit / Hay / Residue Harvest Date Seed / Yield Removal Delete 2000 Alfalfa (% dry matter) Root / (tons/ac) 2001 Fallow Alfalfa Tuber? 2002 Alfalfa 08/30/2000 1.67 50 Х 2003 Fallow Alfalfa 50 07/16/2000 1.67 Х 2004 Alfalfa 50 06/01/2000 1.67 Х 2005 Fallow Alfalfa


COMET-Planner requires **no management history** to generate an **annual average over 10 years**.

·

COMET-Planner uses generalized COMET-Farm outputs.

WaCSE uses COMET-Planner data (filtered to WA).

Filter the data ?	
Step 1. County	
Adams × Snohomish ×	
Step 2. Conservation Class	
Select NRCS categories that desc	ribe the practices you ar
interested in.	

Grazing Lands ×

Step 3. Conservation Practice

Select NRCS conservation practice standards (CPS) you are	
interested in.	

Prescribed Grazing (CPS 528) ×

×

X

X

Step 4. Current Land Use

Select how the land currently is used.

Step 5. Irrigation Type

Select how the current system is irrigated.

Irrigated × Non-Irrigated ×	×

WaCSE uses similar inputs as COMET-Planner but allows county comparison.

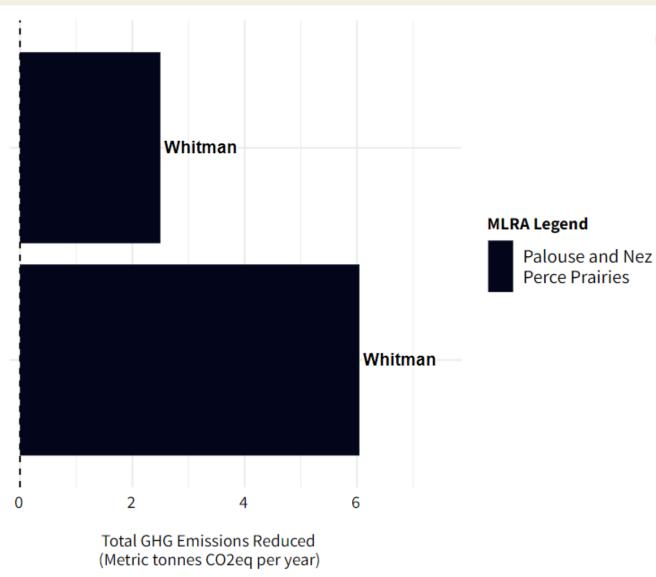
COMET-Planner includes only tables.

Approximate Carbon Sequestration and Greenhouse Gas Emission Reductions*

(tonnes CO_2 equivalent per year) ①

	NRCS Conservation Practices	Acreage	Carbon Dioxide	Nitrous Oxide	Methane	Total CO ₂ Equivalent
0	Add Legume Seasonal Cover Crop (with 50% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland	100 ac	-8	14	0	6
Ö	Add Non-Legume Seasonal Cover Crop (with 25% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland	<u>100</u> ас	-5	8	0	3
	Totals	200	-13	22	0	9

WaCSE includes tables.



County* 🔶	Conservation Practice	Practice Implementation	Acres 🔶	Carbon Dioxide	Nitrous Oxide	Methane 🔶	Total GHG			
	Fractice	Implementation		Emission re	Emission reductions in MT CO2eq/yr**					
Whitman	Cover Crop (CPS 340)	Add Legume Seasonal Cover Crop (with 50% Fertilizer N Reduction) to No- Till Non-Irrigated Cropland	100	-8.02	14.06	0.00	6.04			
Whitman	Cover Crop (CPS 340)	Add Non-Legume Seasonal Cover Crop (with 25% Fertilizer N Reduction) to No- Till Non-Irrigated Cropland	100	-5.47	7.97	0.00	2.50			

WaCSE also includes plots.

Add Non-Legume Seasonal Cover Crop (with 25% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland

Add Legume Seasonal Cover Crop (with 50% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland

WaCSE also includes EPA's equivalency calculator.

8.5 metric tonnes of CO2eq is equivalent to CO2 emissions from:

2.9 Tons of waste recycled instead of landfilled Landfilled

8.5 metric tonnes of CO2eq is equivalent to carbon sequestered by:

COMET-Planner's report only includes the table.

COMET-Planner Report: Approximate Carbon Sequestration and Greenhouse Gas Emission Reductions

Project Name:

State: Washington

County: Whitman

Date: 2023/6/12 23:9:3

NRCS Conservation Practices	Acreage	Carbon Dioxide	Nitrous Oxide	Methane	Total CO2 Equivalent
Add Legume Seasonal Cover Crop (with 50% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland	100	-8	14	0	6
Add Non-Legume Seasonal Cover Crop (with 25% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland	100	-5	8	0	3
Totals	200	-13	22	0	9

And a table footnotes.

*Negative values indicate a loss of carbon or increased emissions of greenhouse gases

**Values were not estimated due to limited data on reductions of greenhouse gas emissions from this practice

For more information on how these estimates were generated, please visit www.comet-planner.com.

Page 1 of 1

WaCSE's report includes background info.

Washington Climate Smart Estimator Report wsda.shinyapps.io/WaCSE

Demo Project report generated by Demo Farm on June 12, 2023

Who and what is WaCSE for?

The Washington State Department of Agriculture developed WaCSE for the Washington State Conservation Commission to use in the Sustainable Farms and Fields (SFF) program. Intended users are the Conservation Commission, conservation districts, growers, and anyone interested in reducing agricultural greenhouse gas (GHG) emissions. This interactive tool estimates the reduction of GHG emissions from different conservation practices across Washington's diverse counties.

What are carbon dioxide equivalents?

Carbon dioxide equivalent (CO2eq) is a unit used to compare various greenhouse gases based on their relative global warming potential.

What are total greenhouse gases?

Total greenhouse gases (GHG) are the sum of carbon dioxide, methane, and nitrous oxide in units of CO2eq. Estimates include those associated with soils and woody biomass, but do not include off-site emissions like those from transportation.

What are emission reduction coefficients?

Emission reduction coefficients were calculated by COMET-Farm, which uses USDA greenhouse gas inventory methods. More information on quantification methods can be found in the COMET-Planner Report.

What are major land resource areas?

Major Land Resource Areas (MLRA) are defined by the NRCS as regions with similar physiography, climate, soils, biological resources, and land use (USDA-NRCS 2006). The GHG emission reduction estimates were calculated at the spatial scale of these multi-county MLRAs (Swan et al. 2022).

Counties within the same MLRA will have the same estimate, unless the county falls within multiple MLRAs. Visit WSDA's online map to identify which county is in which MLRA.

and tables

View your estimated GHG emission reductions

Table Notes

- Counties are grouped by dominant MLRA.
- Emission Reduction Calculation: Area (Acres) × Emission Reduction Coefficient (ERC)
- Negative emission reductions indicate a loss of carbon or increased emissions of GHG.
- "Not estimated" indicates the NRCS has not evaluated this county and practice.

Table 1: Summary of Estimated Total Greenhouse Gas (GHG) Emission Reductions by County

MLRA	County	Unique Practice Implementations	Total Acres	Total GHG (MT CO2eq/yr)
Palouse and Nez Perce Prairies	Whitman	2	200	8.5
Totals		2	200	8.5

Table 2: Estimated Greenhouse Gas (GHG) Emission Reductions

			_	(Metric tonnes CO2eq per year)						
County	Practice	Implementation	Acres	Carbon Dioxide	Nitrous Oxide	Methane	Total GHG			
Whitman	Cover Crop (CPS 340)	Add Legume Seasonal Cover Crop (with 50% Fertilizer N Reduction) to No-Till Non-Irrigated Cropland	100	-8.0	14	0	6.0			

and plots

Demo Farm Demo Project

Add Non-Legume Seasonal Cover Crop (with 25% Fertilizer N Reduction) to No-Till Non-Whitman Irrigated Cropland **MLRA Legend** Palouse and Nez **Perce Prairies** Add Legume Seasonal Cover Crop (with 50% Fertilizer N Whitman Reduction) to No-Till Non-Irrigated Cropland 2 6 0 4 **Total GHG Emissions Reduced** (Metric tonnes CO2 equivalent per year)

and the EPA equivalencies.

Understand your impact

The values shown here are your total estimated esmissions reductions converted into terms you are more likely familiar with. Assumptions and equations used to calculate these values are provided in the Environmental Protection Agency's (EPA) Greenhouse Gases Equivalencies Calculator. Results may differ slightly from those returned by EPA's calculator due to rounding.

Your total estimated GHG emission reduction is: 8.5 metric tonnes CO2eq per year.

This is equivalent to CO2 emissions from:

- 1.7 homes' electricity use for one year
- 961 gallons of gas consumed
- 1,038,992 number of smartphones charged

This is equivalent to GHG emissions avoided by:

- 3 tons of waste recycled instead of landfilled
- 0.4 trash bags of waste recycled instead of landfilled
- 324 incandescent lamps switched to LEDs

This is equivalent to carbon sequestered by:

- **141** tree seedlings grown for 10 years
- **10** acres of US forests in one year
- 0.1 acres of US forests preserved from conversion to cropland in one year

Washington Climate Smart Estimator

Demo

https://wsda.shinyapps.io/WaCSE/

Which tool should you use?

- Farm details not known
- Quick and dirty estimate

- Farm details known
- Detailed analysis

Ball, K.R. et al. (2022) provides a detailed tool comparison, starting on page 35.

		e & nate	So	oil	Mai	Land	ient	с	Cropping Inputs Other GHG Useability Sources			Cropping			Useability		ty		
	Climate & Weather	Geographical Location	Texture / Water Holding Capacity / Bulk Density	Initial SOC/SOM Content	Historical Management	Conservation Practice Status	Tillage / Ground Operations	Crop Type	Crop Rotation	Planting & Harvest Dates	Fertilizer	Organic Amendments	Irrigation	Grazing	Fuel & Energy	Transport	Predictive Scope (years)	Data Requirement	Required Operational Skill Level
	 .	9	,	ֿ	Ō		.	٠		1 ■1		î,	÷	***	☞		C	<u>N</u>	۹
DAY- CENT	0	0	0	0	0	0	0	Ø	0	0	0	0	0	0	8	8	100+ years	High	High
COMET Farm	0	0	Ø	0	0	0	0	0	0	0	0	0	0	0	0	0	10 years	Low	Med.
COOL Farm	8	⊗	Ø	0	8	0	0	Ø	⊗	×	0	0	0	0	Ø	0	1 year	Low	Low
WaCSE	0	0	0	0	8	0	0	⊗	8	⊗	0	0	0	0	0	×	1 year	Low	Low
	~	illy use	er-defi	ned via	a mani	ual ent	ry or i	nput fl	exibilit	y				n exteri	nal dat	:a/othe	er relat	ed too	ls
(<u>)</u> d	efined	throu	gh dro	p dow	n (rest	ricted	choice	es)		×	Not de	fined						

Try WaCSE Out for Yourself!

https://wsda.shinyapps.io/WaCSE/

Leslie Michel

Questions? Comments? Ideas?

Jadey Ryan jryan@agr.wa.gov

